On quark masses

Michael Creutz

BNL

Pseudoscalars in two flavor QCD

- ullet fix m_d , vary m_u
 - $M_{\pi}^2 \propto \frac{m_u + m_d}{2}$
 - $M_{\eta'} \sim \Lambda_{qcd}$
- with isospin broken
 - $M_{\pi_{\pm}}^2 M_{\pi_0}^2 \propto (m_d m_u)^2$
 - η' , π_0 , glueballs all mix

No singularity at $m_u = 0$

- extrapolate to negative m_u
- $M_{\pi_0}^2$ can go negative
- pion condensate forms
 - $\langle \pi_0 \rangle \neq 0$
 - CP broken
- occurs at $\Theta = \pi$
 - $\prod_q m_q < 0$

Dashen 1971

Manifested in both "linear" and "nonlinear" sigma models

Second order transition at non-vanishing m_u and m_d of opposite sign

long distance physics without small Dirac eigenvalues

No structure at $m_u=0$ when $m_d\neq 0$

no long distance physics despite possible small Dirac eigenvalues

At the heart of several frustrating and bitter controversies

- Does $m_u = 0$ have any fundamental meaning?
- Do rooted staggered fermions make sense?
- Is topological susceptibility a physical observable?

Two flavors in the massless limit: $m_u = m_d = 0$

- massive proton, neutron, eta prime, glueballs
- 3 massless Goldstone pions

Eta prime and neutral pion: distinct mixtures of $\overline{u}u$, $\overline{d}d$, and glue

- anomaly: π_0 and η' not degenerate
- four point vertex $\langle \overline{u}_L u_R \ \overline{d}_L d_R \rangle$ does not vanish

Helicity-flip quark-quark scattering does not vanish in the chiral limit

Now turn on a small d quark mass

• closing d loop induces $u_L \ u_R$ mixing

gluons inserted to compensate for odd meson parity

Non-zero d quark mass induces an effective mass for the u quark

Non-perturbative effects

- renormalize $\frac{m_u}{m_d}$
- quark mass ratios not renormalization group invariant
 - (except in isospin limit)

Effect automatically included in lattice simulations

Old point

- Georgi, McArthur, 1981 (unpublished)
- Banks, Nir, Seiberg, 1994 (conference proceedings)
- MC, 2003 (unpublished)
- MC, 2004 (PRL)

Intense consternation from the perturbative community

- effect not seen perturbatively, i.e. in the \overline{MS} scheme
- consequences
 - mass renormalization is not flavor blind
 - mass independent regularization problematic
 - inherent ambiguities defining $m_u = 0$

 \overline{MS} is only a perturbative regulator

• when $m_u \neq m_d$

Matching lattice masses to \overline{MS} is not appropriate!

Specific critiques

Complaint 1:

- Use a mass independent regularization
 - $a\frac{dm_i}{da} = \gamma(g)m_i \Rightarrow \frac{m_i}{m_j} = \text{constant}$

Response:

- allowed, but obscures above off-diagonal m_d effect on m_u
- no guarantee that $\frac{m_i}{m_j}$ universal between schemes
- lattice is not a mass independent scheme
 - unclear how to do matching

When $m_u \neq m_d$

isospin broken

•
$$\frac{M_{\pi^0}^2}{M_{\pi^{\pm}}^2} = 1 - O\left(\frac{(m_u - m_d)^2}{(m_u + m_d)\Lambda_{qcd}}\right)$$

Holding quark mass ratios fixed

hadronic mass ratios scale dependent

Holding hadronic mass ratios fixed

quark mass ratios scale dependent

Complaint 2:

- Do matching at 100 GeV
- instantons exponentially suppressed and irrelevant

Response:

- the lattice simulations are not done at miniscule scales
 - instanton effects must be included
- $1/g^2 \sim \log(\mu) \sim \log(1/a)$
 - exponential suppression in $1/g^2 \to {\sf power}$ in scale μ

Effect controlled by

•
$$M_{\eta'} - M_{\pi_0} \propto \mu \ g^{-\beta_1/\beta_0^2} \ e^{-1/(2\beta_0 g^2)} \not\to 0$$

•
$$\beta_0 = \frac{1}{16\pi^2} (11 - 2N_f/3)$$

•
$$\beta_1 = \left(\frac{1}{16\pi^2}\right)^2 (102 - 38N_f/3)$$

- also proportional to m_d-m_u
- estimate at scale $\mu=2~{\rm GeV}$

$$\qquad \Delta m_u(\mu) \sim \frac{(M_{\eta'} - M_{\pi_0}) \ (m_d - m_u)}{\mu} = O(1 \ \mathrm{MeV})$$

same magnitude as quoted "results"

Note

•
$$M_{\eta'} \propto \mu \ g^{-\beta_1/\beta_0^2} \ e^{-1/(2\beta_0 g^2)}$$

exponential behavior controlled by

•
$$\frac{1}{2\beta_0g^2}=\frac{8\pi^2}{(11-2n_f/3)g^2}<<\frac{8\pi^2}{g^2}=$$
 classical instanton action

- topological excitations above quantum, not classical, vacuum
- classical instanton action strongly overestimates suppression

Rooted staggered quarks

- tastes: $(SU(4)_u, SU(4)_d)$
- well separated spurious states
- not only in chiral limit
- one massless at $m_u = 0$
 - required by symmetry

Can multiple artifacts cancel?

requires unitarity violation

Plausible???

Summary

Non-perturbative effects mix mass terms for different species

- effect absent in perturbation theory
 - inappropriate to match lattice and perturbative masses

Interesting phase structure with negative mass quarks

- CP violating pion condensation
- no structure at $m_u = 0$ when $m_d \neq 0$

Crucial to resolving many controversies

• $m_u = 0$, topological susceptibility, rooting

Review: Acta Physica Slovaca 61, 1 (2011), arXiv:1103.3304

free download at http://www.physics.sk/aps/

Extra Slides

Ising-like transition at $m_u < 0$

- order parameter $\langle \pi_0 \rangle \neq 0$
- breaks CP spontaneously

Connected with the anomaly and $M_{\eta'} \sim \Lambda_{qcd}$

non-perturbative

General mass term $m_1\overline{\psi}\psi+m_2\overline{\psi}\tau_3\psi+im_3\overline{\psi}\gamma_5\psi$

average quark mass, quark mass difference, CP violation from Theta

Two intersecting first order surfaces

•
$$(m_1 = 0, m_3 \neq 0)$$
 and $(m_1 < m_2, m_3 = 0)$

Second order edge at $m_3 = 0$, $0 < |m_1| < |m_2|$

CP breaking related to the Aoki phase

- Wilson fermion lattice artifacts
- phase persists in isospin limit

Aoki phase

First order alternative

Which alternative remains controversial

can depend on lattice action